مقاله Long-Lead Rainfall Forecasting, Using Dynamic Neural Networks: Case Study of Western Part of Iran

 مقاله Long-Lead Rainfall Forecasting, Using Dynamic Neural Networks: Case Study of Western Part of Iran

… دانلود …

مقاله Long-Lead Rainfall Forecasting, Using Dynamic Neural Networks: Case Study of Western Part of Iran دارای 8 صفحه می باشد و دارای تنظیمات در microsoft word می باشد و آماده پرینت یا چاپ است

فایل ورد مقاله Long-Lead Rainfall Forecasting, Using Dynamic Neural Networks: Case Study of Western Part of Iran کاملا فرمت بندی و تنظیم شده در استاندارد دانشگاه و مراکز دولتی می باشد.

توجه : در صورت  مشاهده  بهم ريختگي احتمالي در متون زير ،دليل ان کپي کردن اين مطالب از داخل فایل ورد مي باشد و در فايل اصلي مقاله Long-Lead Rainfall Forecasting, Using Dynamic Neural Networks: Case Study of Western Part of Iran،به هيچ وجه بهم ريختگي وجود ندارد


بخشی از متن مقاله Long-Lead Rainfall Forecasting, Using Dynamic Neural Networks: Case Study of Western Part of Iran :

سال انتشار: 1384

محل انتشار: اولین کارگاه مشترک ایران و کره در مدلسازی اقلیم

تعداد صفحات: 8

نویسنده(ها):

Mohammad Karamouz – Professor, School of Civil Engineering, University of Tehran
Sarnan Razavr – Graduate Research Assistant, School of Civil and Environmental Engineering, Amirkabir University (Tehran Polytechnic)
Shahab Araghinejad – Ph.D., School of Civil and Environmental Engineering, Amirkabir University (Tehran Polytechnic)

چکیده:

Application of Temporal Neural Networks in long-lead forecasting of seasonal rainfall over western part of Iran is presented. Three approaches including application of time delay operators, recurrent connections as well as a hybrid method are used to design Artificial Neural Network (ANN)-based models. Climatic variables including the difference between Sea Level Pressure (SLP) at different characteristic locations in Middle-East and Europe are used as the predictors of the models as well as the persistence between rainfall time series. The characteristic locations include some parts of Mediterranean and Black sea, Greenland, and Azores. The models are calibrated based on 31-year data of historical regional rainfall and are validated by a cross validation procedure. Further, an Auto Regressive Moving Average with eXogenous input (ARMAX) are used as the baselines for assessing the performance of the dynamic networks. The results demonstrated that all temporal neural networks especially time delay recurrent neural network perform significantly better than statistical ARMAX models in long-lead seasonal rainfall forecasting in west of Iran.

پژوهشگر گرامی فایل کامل مقاله Long-Lead Rainfall Forecasting, Using Dynamic Neural Networks: Case Study of Western Part of Iran با تنظیمات کامل و دقیق آماده مطالعه و بررسی شما می باشد شما با دانلود فایل مقاله Long-Lead Rainfall Forecasting, Using Dynamic Neural Networks: Case Study of Western Part of Iran دیگر نیاز به ویرایش اساسی در داخل فایل را ندارید برای مشاهده بخشی از متن فایل بر روی دکمه “توضیحات بیشتر ” در پایین این متن کلیک کنید.